Launch Slideshow

The adjustable shoe of the Metabo locks in place with two set screws and a hex wrench, which can be stored in an onboard slot. A lever lifts to operate the blade clamp.

18-Volt Cordless Recip Saws Tool Test

18-Volt Cordless Recip Saws Tool Test

  • The adjustable shoe of the Metabo locks in place with two set screws and a hex wrench, which can be stored in an onboard slot. A lever lifts to operate the blade clamp.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-1_tcm80-2126746.jpg

    true

    The adjustable shoe of the Metabo locks in place with two set screws and a hex wrench, which can be stored in an onboard slot. A lever lifts to operate the blade clamp.

    600

    The adjustable shoe of the Metabo locks in place with two set screws and a hex wrench, which can be stored in an onboard slot. A lever lifts to operate the blade clamp.
  • 2. Large fold-out hooks on the Makita and Milwaukee Fuel allow you to hang the saws from rafters, ladders, or scaffolding. The hooks click into position or stow flat against the tool.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-2_tcm80-2126748.jpg

    true

    2. Large fold-out hooks on the Makita and Milwaukee Fuel allow you to hang the saws from rafters, ladders, or scaffolding. The hooks click into position or stow flat against the tool.

    600

    TIM UHLER

    2. Large fold-out hooks on the Makita and Milwaukee Fuel allow you to hang the saws from rafters, ladders, or scaffolding. The hooks click into position or stow flat against the tool.
  • The multiposition shoes of both DeWalt saws and the Makita (shown here) lock in place with a sliding button mechanism.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-3_tcm80-2126749.jpg

    true

    The multiposition shoes of both DeWalt saws and the Makita (shown here) lock in place with a sliding button mechanism.

    600

    The multiposition shoes of both DeWalt saws and the Makita (shown here) lock in place with a sliding button mechanism.
  • The blade clamp on both DeWalt saws can hold a blade in four different cutting positions. An additional slot holds the blade perpendicular to the handle, and when the saw is held upside down, this position allows for closer flush cuts without having to bend the blade very far to get it flat to the cutting surface.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-4_tcm80-2126750.jpg

    true

    The blade clamp on both DeWalt saws can hold a blade in four different cutting positions. An additional slot holds the blade perpendicular to the handle, and when the saw is held upside down, this position allows for closer flush cuts without having to bend the blade very far to get it flat to the cutting surface.

    600

    The blade clamp on both DeWalt saws can hold a blade in four different cutting positions. An additional slot holds the blade perpendicular to the handle, and when the saw is held upside down, this position allows for closer flush cuts without having to bend the blade very far to get it flat to the cutting surface.
  • The Metabo and Panasonic (shown here) saws have a spring-loaded trigger lock-off switch that must be pushed while pulling the trigger before the tool will turn on. These switches are a nuisance and require you to reposition your grip every time you start up the saw.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-5_tcm80-2126751.jpg

    true

    The Metabo and Panasonic (shown here) saws have a spring-loaded trigger lock-off switch that must be pushed while pulling the trigger before the tool will turn on. These switches are a nuisance and require you to reposition your grip every time you start up the saw.

    600

    The Metabo and Panasonic (shown here) saws have a spring-loaded trigger lock-off switch that must be pushed while pulling the trigger before the tool will turn on. These switches are a nuisance and require you to reposition your grip every time you start up the saw.
  • The Bosch has fixed-position shoes and a metal blade-clamp collar. The clamp ejects the blade when you twist it and remains open until another blade is inserted, making it possible to change a blade with one hand.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-6_tcm80-2126752.jpg

    true

    The Bosch has fixed-position shoes and a metal blade-clamp collar. The clamp ejects the blade when you twist it and remains open until another blade is inserted, making it possible to change a blade with one hand.

    600

    Dave Frane

    The Bosch has fixed-position shoes and a metal blade-clamp collar. The clamp ejects the blade when you twist it and remains open until another blade is inserted, making it possible to change a blade with one hand.
  • The Hitachis tiny spring-loaded lever pivots to release or lock the blade. Its wise to lock the lever manually, a two-hands operation, rather than rely on the small spring to secure the blade.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-7_tcm80-2126753.jpg

    true

    The Hitachis tiny spring-loaded lever pivots to release or lock the blade. Its wise to lock the lever manually, a two-hands operation, rather than rely on the small spring to secure the blade.

    600

    Dave Frane

    The Hitachi’s tiny spring-loaded lever pivots to release or lock the blade. It’s wise to lock the lever manually, a two-hands operation, rather than rely on the small spring to secure the blade.
  • The multiposition shoes of the Milwaukee Fuel (shown here) and the Ridgid lock in place with a lever clamp.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-8_tcm80-2126754.jpg

    true

    The multiposition shoes of the Milwaukee Fuel (shown here) and the Ridgid lock in place with a lever clamp.

    600

    Dave Frane

    The multiposition shoes of the Milwaukee Fuel (shown here) and the Ridgid lock in place with a lever clamp.
  • LED headlights are found on the Makita, Milwaukee Fuel (shown here), and Ridgid saws. The Ridgids light has a separate switch, built into the handle, for flashlight use without running the saw motor, while the other two have a built-in delay that keeps the light on for a short while after a tap on the trigger.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-9_tcm80-2126755.jpg

    true

    LED headlights are found on the Makita, Milwaukee Fuel (shown here), and Ridgid saws. The Ridgids light has a separate switch, built into the handle, for flashlight use without running the saw motor, while the other two have a built-in delay that keeps the light on for a short while after a tap on the trigger.

    600

    Dave Frane

    LED headlights are found on the Makita, Milwaukee Fuel (shown here), and Ridgid saws. The Ridgid’s light has a separate switch, built into the handle, for flashlight use without running the saw motor, while the other two have a built-in delay that keeps the light on for a short while after a tap on the trigger.
  • Battery-charge gauges mounted on the battery itself allow you to check power without having to slide the battery into the tool. A tool-mounted gauge, such as on the Hitachi saw, allows checking the charge of any battery once it is inserted.

    http://www.toolsofthetrade.net/Images/18v%20cordless%20recip%20saw%20sidebar-10_tcm80-2126747.jpg

    true

    Battery-charge gauges mounted on the battery itself allow you to check power without having to slide the battery into the tool. A tool-mounted gauge, such as on the Hitachi saw, allows checking the charge of any battery once it is inserted.

    600

    Dave Frane

    Battery-charge gauges mounted on the battery itself allow you to check power without having to slide the battery into the tool. A tool-mounted gauge, such as on the Hitachi saw, allows checking the charge of any battery once it is inserted.

Five years ago, our test of the first generation of lithium-ion (Li) powered reciprocating saws determined that for getting the job done quickly, 36-volt tools were the ones to buy—most 18-volt models weren't up to jobsite challenges. But I'm happy to report that advancements in motor and battery technology make some of the newer 18-volt models capable of serious work. They're worth considering to add cordless convenience to your demolition and other recip-saw jobs.

I tested the tools in kit form with a battery, charger, and carrying case (where available). Keep in mind that these saws are also sold without batteries or chargers (referred to as bare tools) for users who already have batteries and chargers from the same manufacturer.

If that's your situation, you might decide not to buy the tool that we thought was the best. Instead, you might just need to know whether your brand is good enough to get the job done. I included performance details and provided complete information on each saw we tested.

USING THE SAWS

During my time with these tools, I evaluated and tested each one. I used 6-inch-long, 6 TPI Lenox blades (B656R) to cut through blade-wrecking test planks similar to the ones I used for my reciprocating-saw-blade test in the Winter 2012 issue of TOOLS OF THE TRADE.

The planks are made from a piece of OSB sandwiched between 2x6s and capped with a layer of 5/8-inch drywall and more OSB. The central piece of OSB is flanked by 12 rows of nails glued rigidly into grooves—10 rows of 16d commons, one of 16d sinkers, and one of 8d sinkers. The result is that each pass of a saw blade though these planks cuts 12 nails.

I clamped the planks into a waist-height vise so I could really lean into the cuts. All the tools could cut through these test planks, but while some sprinted, others made it only at a crawl. When I really pushed the tools, the important performance differences became evident.

My tests enabled me to classify the saws as light-, medium-, or heavy-duty tools. I also categorized them by how much they vibrate in use: low, medium, medium high, or high.

And after making hundreds of cuts with these saws, I made comments about all of them, some that you can read below. You can also see the saws' complete specifications and comments on them.

When testing the saws, I rated their performance in two ways (see charts at right). To rate power, I timed how long it took each saw to cut through a doubled 2x6. And to rate runtime, I counted the number of times each saw cut through a doubled 2x6 on a single battery charge. (Before every test, I put a new blade in each saw.)

DUTY RATINGS

While using the saws, I discovered a few basic tendencies they displayed while under load. Power is the main takeaway here, but a reciprocating saw needs more than just that to excel. The saws' ability to cut aggressively and for long periods of time relies on several factors: keeping the battery from overheating, longer stroke lengths that clear sawdust faster, and vibration control that keeps the blade firmly in the bottom of the kerf.

I pushed the tools hard because that's the way they are used in the field. No one babies a reciprocating saw. Plus real-world use allowed me to separate them into three performance categories:

1. Heavy-duty saws could take as much force as I could apply, without stalling or bogging down dramatically, so pushing harder generally resulted in faster cutting. These tools cut the quickest and were the least temperamental and therefore shaped the category I preferred overall. The dogged performance of the four Milwaukee and DeWalt tools earned them each a place in this category.

2. Medium-duty saws had a limiting pace that they couldn't be coaxed out of, but at least they acted predictably. Pushing harder didn't make them cut faster, but it didn't slow them down much, either. Though they make you wait longer for the results, they get the job done, so one of these saws may be all that's needed for average tasks. Saws by Bosch, Hitachi, and Panasonic made the cut for this category.

3. Light-duty saws are more trying to use because when you push harder, motor speeds (and already conservative cutting speed) drop dramatically, and they stall frequently. These tools actually perform better if you let up on the pressure, but I find it difficult to use a saw that I have to baby while trying get the job done. The Makita, Metabo, and Ridgid saws fell into this category.

RUNTIME

It's not surprising that a battery with higher amp-hour ratings will run a saw for a longer stretch of time than one with a lower rating. As such, runtime tests are often a test of a battery, not of the saw.

So, instead of measuring the time a tool ran on a battery charge, I measured how much work each tool could do on a charge. Consequently, if a tool is a slow performer, it may actually run longer than a fast-cutting tool, but what's important is the work that results from the operating time. When fully loaded in 3-inch-thick cuts, even the best saws may only cut for five minutes before needing to be recharged.

VIBRATION

The trade-off between a powerful and a gentle tool is usually how fast it cuts. For the sake of my carpal tunnel syndrome and bouts of tendonitis, I wish there were a fast-cutting tool that didn't vibrate a lot, but the fastest-cutting tools are all a bit on the brutal side.

That being said, because the most comfortable tools are on the slow side, I'd rather endure a reasonable amount of vibration to get the job done faster instead of losing time waiting on a gentle tool to make the cut. Here's how the tested tools "shook out" in terms of overall felt vibration during many types of cuts:

Low: Hitachi, Metabo, and Ridgid
Medium: Makita, Milwaukee Fuel
Medium-high: Bosch, Milwaukee
High: both DeWalts and Panasonic

The easiest ways to reduce vibration are to secure your work as firmly as possible and to use a lot of force to push the shoe of the saw against the material being cut. Another technique is to reduce your feed speed or motor speed. Often, you can find a sweet spot where the vibrations cancel each other out, and reducing your feed pressure usually keeps the blade from pushing back toward you with so much force.

HOW NOT TO EASE VIBRATION

The Panasonic saw has a feature that causes uncontrollable vibration. Instead of having a rigid shoe to hold firmly against the work surface, this saw actually has little springs inside that provide shock absorber–type suspension to the shoe. This means that whenever the blade teeth bite into the wood and pull back toward the saw, instead of pulling firmly against the shoe's resistance to rip out the wood, the firmly anchored blade actually jerks the entire saw forward as the flex of the springs allows the shoe to move freely.

This action also makes it very difficult to slowly and carefully start cuts in wood or metal, because once the saw teeth get the slightest bite, the saw just bounces back and forth instead of moving the blade through the material.

Other than possibly replacing the springs with steel pins to negate this ill-conceived suspension design, there is no way around this excessive and needless vibration. Either you have to push forward incredibly hard in an attempt to bottom out the springs, or you must hold the tool back with the minimum amount of force against the shoe. Both ways, at times this saw will practically shake the earplugs out of your head.

ERGONOMICS

Besides vibration, a few other considerations affect the comfort of using these saws. The Metabo and Panasonic saws have a spring-loaded trigger lock-switch that must be pushed in before you pull the trigger. Pushing the switch in before every cut requires you to move your hand from its ideal grip position constantly, which causes grip strain and wastes time.

Another consideration is the shape of the top of the tool's trigger handle. Tools with a rounded-over profile are much friendlier to your hand and easier to grip than those with a pronounced ridge above the handgrip. When I use a recip saw for extended periods, I push on the top of the tool with my left hand; saws with a ridged-top grip handle are uncomfortable and fatiguing. The Milwaukee and both DeWalt saws provide great examples of this grip surface done right.

ADJUSTABLE SHOES

Adjustable shoes allow you to control the saw's cutting depth, which is important for plunge-cutting safely into walls, floors, ceilings, or roofs. But just as important, an adjustable shoe allows you to use all the teeth on a blade. When one section of a blade's teeth get dull, you can adjust the depth of cut and then use a previously unused section with sharp teeth.

This isn't just a matter of blade economy in dollars and cents, but truly an underused timesaver on the job. When making repetitive cuts, the same teeth are being used (and dulled) constantly, but by moving the blade so that even just a few fresh teeth are put into action, cutting times and therefore practical blade life can improve dramatically.

THE BOTTOM LINE

The overall winner is the Milwaukee Fuel model. It cut the fastest, ran the longest, and managed vibration better than the other heavy-duty saws. It features a sturdy adjustable shoe, a quick-acting blade clamp, a useful hanging hook, and LED headlight.

The second-place tools are the Milwaukee and 20V Max DeWalt saws—both strong and capable where it counts in performance. The Milwaukee lacks an adjustable shoe, but the DeWalt has much more vibration, so their exact placement is a toss-up.

Like its brandmate, the DC5385L DeWalt is a strong performer, but it misses the mark with its low runtime.

Next in order come Bosch and Hitachi—both quality saws that work diligently but more slowly than the top-tier saws. The Metabo saw follows. And low or troublesome performance issues have the Makita, Panasonic, and Ridgid trailing the others.